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INTRODUCTION 

Although the exact physical and chemical mechanisms are not clearly 
understood, it is widely believed that an interphase region with properties that 
differ from those of the plain matrix is developed near fiber surfaces in 
polymer matrix composites. The current study involves experimental investi
gation and theoretical modeling of the influence of the interphase on local 
thermal displacements. Experimental studies have centered on the develop
ment of a scanning microinterferometer for in-situ measurements of thermal 
displacements in the interphase. Thermal displacement measurements have 
been successfully made for specimens containing a single carbon fiber 
embedded in an epoxy matrix. A three-phase composite cylinder model is 
adopted to predict the thermal displacements of the single fiber specimen. 
Comparison of the theoretical displacement predictions with the experimental 
profiles measured by the interferometer indicate that the value of the matrix 
properties near the fiber surface differs from the value in the bulk resin. The 
data provide evidence of the existence of a lower glass transition temperature 
in the interphase. 

Keywords: interphase, thermal, displacements, fiber/matrix interface, local 
properties 

A typical polymer composite consists of a 
reinforcement, either fibrous or particulate, 
embedded in a thermoplastic or thermoset 
matrix. It is widely believed that, when these 

constituents are combined into a composite, a 
third phase is formed. This phase has become 
known as the interphase. Hence, the interphase 
is defined as a region which develops between the 
constituents of a composite and possesses the 
properties neither of the reinforcement nor of the 
matrix. This region most probably has a gradient 
in material properties which approach those of 
the plain resin with radial distance. The size of 
the interphase has been est:mated to be 
anywhere between a few nanometers and a few 
thousand. 1 
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In general, the interphase in polymer matrix 
composites can be formed by three basic 
mechanisms: chemical bonding, molecular segre
gation, and van der Waal bonding. 2 Through 
these mechanisms, structural gradients can be 
created in the matrix owing to the influence of 
the fiber surface on the long polymer chains. 

In thermoplastic composites, an interphase can 
form as a result of segregation at the molecular 
level in the matrix. Schonhorn & Ryan3 clearly 
demonstrated an enhancement of order develop
ment in polyethylene molecules in the vicinity of 
high-energy surfaces. Droste & DiBenedetto4 

observed a 9°C increase in the glass transition 
temperature of a thermoplastic polymer as the 
concentrations of particulate fillers were in
creased. This increase was interpreted as loss of 
long-range chain flexibility and mobility of the 
polymer molecules in the vicinity of the filler 
surface. Recently, Pangelinan5 has shown that 
entropically driven molecular weight segregation 
occurs in a thermoplastic polymer owing to the 
presence of a surface. In addition, several 
researcherser-9 have found that crystallization, 
nucleation, and transcrystallinity in thermoplas
tics are influenced by the fiber surface and are 
associated with the formation of an interphase. 

In thermosetting systems, the interphase may 
result from changes in the cure chemistry of the 
resin near the fiber surface. Early on, Erickson et 
a/. 10 proposed that the surface properties of glass 
fibers could cause some of the constituents in a 
thermosetting matrix to be adsorbed, deactivated 
or destroyed. An enrichment of the amine curing 
agent was shown to develop near the fiber 
surface. Lipatov et a/. 11 demonstrated that fillers 
affect the relaxation time spectra of filled 
polymer systems. It was proposed that the 
presence of the filler restricted the molecular 
mobility of the epoxy matrix. Papanicolaou & 
Theocaris12 used differential scanning calorimetry 
to measure changes in heat capacity with 
temperature for both a filled and an unfilled 
epoxy system. Estimates of an interphase volume 
fraction were based on differences in the jumps 
of the heat capacity of the two systems in the 
glass transition region. By means of infrared 
attenuated internal reflectance (IR) spectro
scopy, Garton & Daly13 showed that simulated 
reinforcement surfaces of both carbon and 
Aramid modify the cross-linking chemistry in the 
epoxy matrix adjacent to the surface. 

More recently, Palmese14 has shown that the 

presence of carbon fibers can alter the reaction 
behavior in thermosetting systems. Palmese 
performed extensive studies of the diffusion
related structural modifications of a Shell 
EPON 828/PACM 20 epoxy matrix. For this 
particular system, a stoichiometric imbalance of 
epoxy resin and amine curing agent developed 
near graphite fiber surfaces. The cross-link 
density, epoxy concentration and amine con
centration were predicted as a function of radial 
distance from the fiber surface. 

Although the interphase is of microscopic 
proportion, it actually constitutes a significant 
percentage of the matrix in a composite. The 
small-diameter fibers used in advanced compos
ites have an extremely high surface area/volume 
ratio. For a high fiber volume fraction composite, 
this ratio is of the order of 104 in - 1

•
2 Con

sequently, the fraction of the resin that is 
interphase can approach 50% in a typical 60% 
volume fiber composite. Thus, the structure and 
properties of the interphase have the potential to 
control many of the thermomechanical, chemical 
and electrical properties of the overall composite. 
In particular, the durability characteristics such 
as strength and fracture toughness are most likely 
to be affected. 

Numerous papers have studied the influence of 
the interphase on mechanical performance of the 
composite. Review papers1

'
15

'
16 discuss the 

importance of interphase constituents and chem
istry, as well as the effects of interphase on 
overall composite strength, fracture, and en
vironmental resistance. Parametric studies by 
Sottos et a/. 17 have demonstrated that material 
property gradients in a thin interphase region 
around the fiber can have a significant effect on 
the development and distribution of local thermal 
stresses. Studies by Jayaraman & Reifsnider18 

have also found that gradients in the elastic 
modulus of the interphase alter the magnitude of 
the local stresses. Early studies by Arridge19 

demonstrated that an interphase can have a 
significant effect on the transverse stresses in 
fiber composites. More recently, Pagano & 
Tandon20

•
21 and Tong & Jasiuk22 have shown that 

the interphase strongly influences the transverse 
elastic stiffness of the composite. 

It is believed that, by controlling the properties 
of the interphase, optimal composite properties 
and performance can be obtained. The ability to 
optimize the properties of the interphase 
effectively, however, relies on the ability to 
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predict or measure these property values. 
Determining the local structure and properties of 
the interphase is crucial to understanding how 
the interphase influences overall composite 
behavior. In order to develop and evaluate 
mechanics models or empirical relationships 
which correlate composite behavior with inter
phase behavior, the properties of the interphase 
must be accurately measured. Typical reinforcing 
fibers used in composite materials have diameters 
ranging from 51'-m to 150 11m, while the distance 
between fibers for a high volume fraction is of 
the order of 2 11m or less. Most of the traditional 
techniques for quantitatively determining mater
ial properties and behavior are inadequate for a 
region of this size. Consequently, the scale of 
micromechanical measurements must be refined 
to include the interphase region. 

Recent investigations by Sottos et al. 23
•
24 and 

Ryan et al. 25 have demonstrated the utility of 
interferometric methods for non-destructively 
measuring thermal displacements in the inter
phase. Because an interferometer probe is a light 
beam, it has the capability to resolve small 
displacements in regions comparable to the 
wavelength of the light being used. The ability to 
make such displacement measurements provides 
a quantitative method for studying material 
properties and behavior on a microscale. It was 
proposed that, by measuring the displacements in 
a region local to the fiber and comparing them 
with theoretical predictions, trends in local 
material properties could be assessed. In this 
paper, an elasticity solution is derived for the 
prediction of the thermal displacements of a 
single fiber specimen. A three-phase composite 
cylinder model is adopted so that the influence of 
a uniform interphase region can be studied. The 
theoretical displacement profiles are compared 
with those measured by the interferometer, and 
several conclusions are made about the nature of 
the interphase in carbon/epoxy composites. 

DISPLACEMENT MEASUREMENTS 

Previous studies by Scott et al. 26
•
27 and Huber et 

al. 28 described a technique for measurement of 
sub-micron displacements caused by ultrasonic 
waves propagating at frequencies of 1 MHz and 
above. A distinguishing feature of these earlier 
methods was the formation of a magnified image 
on the face of a scanning detector, while the 

Table 1. Fiber and matrix material properties 

Property Carbon fiber EPON 828/P ACM 20 

E(GPa) 41·0 2·5 
a (xl0-6oc-t) -0·5 68·0 

K(m~c) 8·3 0·18 

v 0·22 0·33 

sample served as a stationary mirror in one arm 
of the interferometer. By using a scanning 
detector window with a diameter smaller than the 
obtainable resolution of the image, detailed 
displacement contour plots were made without 
the necessity for continuous realignment of the 
specimen. From these preliminary designs, a 
microinterferometric technique has evolved for 
measuring thermal displacements with an out-of
plane resolution of 5 nm and a possible in-plane 
resolution of 0·51'-m. A detailed description of 
the experimental technique is given by Sottos et 
al. 23

·
24 and Ryan et al. 25 

Thermal displacement measurements were 
obtained for specimens consisting of a single 
carbon fiber embedded in epoxy. The fibers used 
for this study were untreated 30-~Lm pitch-base 
carbon fibers supplied by Textron, the properties 
of which are listed in Table 1. The value for 
Young's modulus, E, was specified by the 
manufacturer, while the values for the lon
gitudinal thermal expansion coefficient, a, 
thermal conductivity, K and Poisson's ratio, v, 
were taken from the literature?9 All of the fibers 
were washed in isopropyl alcohol to remove any 
surface residues before being used in a specimen. 
Shell EPON Resin 828 ( diglycidyl ether of 
bisphenol A*) cured with a P ACM 20 [bis(p
aminocyclohexyl)methane] amine was chosen as 
the matrix material. Properties of the plain resin 
are also given in Table 1. The modulus, Poisson's 
ratio and thermal conductivity were obtained 
from the manufacturer, while the coefficient of 
thermal expansion was determined from thermal 
mechanical analysis (TMA). 14 

Three samples, labeled A, B and C, were 
prepared for experimental analysis. Samples 
were made by placing a single fiber into the 
center of a mold which was then filled with a 
stoichiometric mix of resin (28 parts 
PACM 20:100 parts EPON 828). All samples 
were held for 1 h at 80°C to minimize the amount 
of bubbles in the resin phase, then cured for 
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30 min at 150°C, and allowed to cool slowly 
overnight to room temperature. Sample A was 
the first sample made and was cured separately 
several months prior to B and C. Specimens were 
cut to a length of approx. 2 em and the front and 
back faces were polished metallographically. 
Polishing of the front face on which the 
measurements were made was critical to ensure a 
specularly reflective surface. The radius of the 
fiber was determined to be 17·2 fJ.ffi from a 
photomicrograph of the sample surface. The 
outer radius of the samples measured 15·88 mm. 

To heat the sample, a small current of 11·0 rnA 
was passed through the fiber, as leads were 
attached to both the front and back polished 
faces of the specimen. A thin layer of gold was 
sputtered onto the surface to provide both a 
current conduction path and a highly reflective 
surface across the circular cross-section of the 
fiber/matrix interface. There were several ad
vantages to heating the sample electrically in this 
manner. A repeatable, radial temperature field 
was generated in the sample which could be 
predicted analytically. The equilibrium time for 
heating and cooling the region of interest was 
small (typically less than 10 s). Finally, there was 
minimal convection of heat into the interfero
meter path, minimizing thermal effects on the 
apparatus. 

Analytical prediction of the temperature 
distribution in the sample required the solution 
of the heat conduction equation for an 
electrically heated fiber embedded in an epoxy 
matrix. This problem has been solved 
previously23 and the results are presented in the 
next section of this paper. By substituting the 
appropriate material properties into eqn (13), the 
analytical temperature distribution in the sample 
was calculated. A power input of 68 mW was 
used to heat the samples. As a result, the 
temperature in the fiber was nearly constant at 
70°C, while the matrix temperature decreased 
rapidly away from the interface. The analytical 
prediction for fiber temperature was compared 
with experimental values and found to differ by 
less than 5%. 23 

To measure the thermal displacements at the 
interface, it was convenient to make measure
ments on single scan lines extending across the 
fiber center. The magnification of the interfero
meter was 25 x for these measurements so that 
the far field matrix could be included in the scan. 
Heating the sample caused the matrix to expand 

Radial Distance (r/r
1

) 

Fig. 1. Demonstration of repeatability of thermal displace
ment measurements for sample C. 

upwardly and pull the fiber with it. Subtraction of 
an initial unheated scan line from the heated scan 
line yielded the net thermal displacement of the 
region. A series of displacement measurements 
was made on all three samples. Figure 1 is a plot 
of two consecutive displacement measurements 
on sample C. The displacements are plotted from 
the fiber center, r = 0, as a function of radial 
distance. The displacements have been normal
ized by subtracting from each point the value of 
the displacement of a reference point at 25 fiber 
radii out. The repeatability of the measurement 
on the same sample is excellent, as the largest 
difference between the two curves is approxi
mately 15 nm. For both runs, the displacement of 
the fiber is nearly constant. However, there is a 
sharp rise in the displacement of the matrix near 
the interface, which peaks at about five fiber radii 
out. After this point, the matrix displacements 
decrease almost linearly with radial distance. 

The data for two consecutive runs on each 
sample were then averaged together and 
compared across samples. Figure 2 shows the 
average displacement profiles for samples A, B 
and C. Again, the displacements were normal
ized by a reference point 25 fiber radii out. The 
data from samples B and C show excellent 
repeatability. Although sample A exhibits the 
same trends as B and C, the difference in the 
profiles is much greater than the experimental 
accuracy. The anomalous results for sample A 
could be attributed to several factors. Sample A 
was cured separately from samples B and C. 
Moreover, sample A was mounted in the 
interferometer for approximately 6 months. 
During this time, it would have been able to 
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Fig. 2. Comparison of repeatability of thermal displacement 
measurements across samples A, B, C. 

absorb appreciable moisture. Displacement meas
urements were recorded after several months 
of repeatedly scanning A to perfect the 
interferometer. The measurements on samples B 
and C were made within days of each other. 
Photomicrographs of the samples were taken 
after the experiments were completed. Sample A 
had a dark ring around the fiber which was not 
present in the other samples. In fact, the surfaces 
of samples B and C were so smooth that it was 
difficult to identify the fiber. It is not known 
whether the ring on sample A existed prior to 
making the displacement measurements. Since 
light is not reflected by such a ring, it would act 
to decrease the signal received by the photo
detector and would significantly affect the 
measurement. 

THEORETICAL PREDICTIONS 

The literature contains a number of papers that 
derive a methodology for calculating the 
displacements and stresses in cylindrical domains. 
From linear thermoelasticity theory, Iesan30 

studied the static problem of thermal stresses and 
deformations in a composite cylinder made of 
two different homogeneous, isotropic materials. 
However, the analysis assumed that the out-of
plane (axial) displacements remained constant 
with radial distance. Although this assumption is 
acceptable when overall composite behavior is of 
concern, the variation can become significant 
when studying local material behavior. In fact, 
the radial variation of displacement is the precise 
quantity which was measured experimentally. 

By using a two-phase, concentric cylinder 
model, Haener31 predicted the stresses and 
displacements induced by both uniform resin 
shrinkage during processing and external loads in 
a unidirectional composite. The solution 
employed a potential approach, which did 
account for the radial dependence of axial 
displacement. By a similar method, Levy32 

developed a two-phase model to predict dis
placements resulting from an average applied 
load over the edge of the cylinder. The problem 
of thermal stresses in a hollow anisotropic 
cylinder due to axisymmetric temperature vari
ations at the plane ends was solved by Misra & 
AcharP3 using potential functions of displace
ment. Additionally, Tanigawa & Kuriyama34 

have analyzed the transient thermal stresses and 
deformations in a semi-infinite solid cylinder with 
a moving boundary. The problem was treated as 
quasi-static state so that the temperature field 
and corresponding thermoelastic field could be 
analysed individually. 

In the current study, a thermal displacement 
solution is derived for a three-phase, finite, 
composite cylinder model using a displacement 
potential approach. A schematic of the cylinder 
model is shown in Fig. 3. Throughout the 
analysis, the indices i = 1, 2, 3 will be used to 
denote the fiber, interphase and matrix domains, 
respectively. The interphase, r1 < r < r2 , is 
treated as a region with uniform material 
properties, different from those of the matrix or 
the fiber. The matrix, fiber and interphase are 
assumed to be isotropic. This is a major 
assumption since the carbon fiber is actually 

'3 

Fig. 3. Schematic of the three-phase finite cylinder model 
for the single fiber specimen. 
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transversely isotropic. Currently, no analytical 
tools exist for predicting the radial variation of 
axial displacement for a transversely isotropic 
fiber. Because the out-of-plane thermal displace
ments are dominated by the axial properties, the 
fiber properties chosen in Table 1 are the axial 
values. 

The governing equation for the stationary 
thermoelastic problem in the ith domain is given 
by NowackP5 as 

(iY> Vlg(i> + (J: + fi, )<i) grad div u<i) 

+ X(i> = cr<i> grad T (1) 

where u is the displacement vector, T is the 
temperature distribution in the cylinder, cr is the 
coefficient of thermal expansion, and ;: and {), are 
the Lame constants. Because the cylinder is only 
subjected to a thermal load, the outer surfaces 
are traction free. This condition requires that at 
z =I 

and at r = r3 

a~3> = 0 

a~;>= 0 

(2) 

(3) 

For both the fiber/interphase boundary, r = r11 

and the interphase/matrix boundary, r = r2 , 

continuity of displacements and tractions (perfect 
adhesion) is assumed. Thus the interface 
boundary conditions are expressed at r = r1 

and at r = rz 

u<I> = u<z> 

w<I> = w<z> 

a~l) = a~2> 

u<Z> = u<3> 

w<z> = w<3> 

a~z> = a~3> 

a~;>= a~;> 

(4) 

(5) 

The midplane of the cylinder is a plane of 
symmetry so that at z = 0 

a~?=O 
w(i> = 0 

(6) 

A final boundary condition requires that the 
displacements are finite at the center of the fiber, 
r=O. 

Following the method of Nowacki,35 the 
displacement solution is assumed to consist of 

two parts 
u=u' +u" (7) 

where u' is the particular solution and u" is the 
complementary solution. (The superscripts (i) 
have been dropped temporarily for convenience.) 
The particular solution is given by 

u' =grad ct> (8) 

where ct> is the displacement potential. Introduc
ing eqns (7) and (8) into the governing eqn (1), 
the following relationship is obtained 

grad[ ( J: + 2{),) V2ct> - crT] + {), V2u" 

+ (J: +{),)grad div u" = 0 (9) 

In order for eqn (9) to be valid, the following two 
characteristic equations must be satisfied: 

fi, Vlg" + (J: +{),)grad div u" = 0 (10) 

where 
m =;: + 2{), 

(11) 

(12) 

Thus the bounded problem can be solved in 
two steps. In the first step, a displacement 
potential, ct>, is determined from the solution of 
the Poisson eqn (11) by assuming a convenient 
boundary condition such as ct> = 0. An expression 
for the temperature distribution in the cylinder, 
T, must be known. The heat conduction equation 
has been solved previously for the case of an 
electrically heated fiber embedded in an epoxy 
matrix. Neglecting heat losses from the outer 
surfaces of the sample at r = r2 and z = ±I, the 
steady-state temperature field in the sample is 
given as follows: 23 

00 

T(r, z) = L [Anlo(Knr) 

where 
An = ZnKo(Knrz) 

Bn = -Znfo(Knrz) 

(14) 

(15) 

The constants Zn are determined by the 
application of the boundary condition at r = r1 • 

This condition requires that there is no 
temperature discontinuity at the fiber/matrix 
interface. The constants are given by 

(16) 
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where 

Fo = Ko(Knr1)Io(Knrz)- lo(Knr1)Ko(Knrz) (17) 

F;. = l1(Knr1)Ko(Knrz) + K1(Knr1)lo(Knrz) (18) 

The functions, /0 , / 1 and K 0 , K 1 are modified 
Bessel functions of the first and second kind, 
respectively. The Kn are the eigenvalues and are 
expressed as 

n;r 
K =-

n 2/ (19) 

Substitution of the temperature field given by 
eqn (13) into the right-hand side of eqn (11) 
yields the following displacement potential: 35 

m 00 1 
<I>=- L 2 [Anfo(Knr) 

2 n=1 Kn 

The equations relating <I> to the particular 
components of the displacements are well known 
and are given in the appendix. Substitution of <I> 
into these relationships yields expressions for the 
particular displacements, u', and stresses, a', 
which are also included in the appendix. 

In the second step of the overall solution, the 
homogeneous eqn (10) is solved so that all the 
necessary boundary conditions are satisfied. The 
system of equations is solved conveniently in 
cylindrical coordinates using the Galerkin func
tion, F. Galerkin's representation has the form35 

(.) A+ p, 
u"' = grad div F (21) 

A+ 2p, 

where F is required to satisfy the biharmonic 
equation 

(22) 

For the case when there is only a thermal load on 
the cylinder, the general solution to the 
biharmonic eqn (22) is given by31 

00 

F = L [D1nlo(Knr) + DznKo(Knr) 
n=l 

+ D3nKnrf1(Knr) 

+ D4nKnrK1(Knr)] sin(KnZ) (23) 

where D(il D(i) D<il and D(il are constants to be ln1 2ri1 3n1 4n 

determined. The functions, 10 , / 1 and K 0 , K 1 are 
modified Bessel functions of the first and second 
kind, respectively. The relationship of the 
complementary components of the displace-

ments, u", and stresses, d', to the Galerkin 
vector, F, are given in the appendix. 

The superposition of the partial displacements, 
u' and u", and the partial stresses, a' and a", 
yields the total displacements and stresses. In this 
manner, the final expression for axial displace
ment is as follows: 

n=1 

+ D~~hi~ + Di~gY~] sin(Knz) (24) 

The functions, h~~' hY~, g~~' gY~ and /1n, are given 
in the appendix. The twelve constants, D~~, D¥L 
D~~' and DYL are determined by systematic 
application of the boundary conditions. It is 
important to note that the total stress, a= 
a'+ a", and the total displacement, u = u' + u" 
must satisfy the boundary conditions. 

The condition of finite displacements at r = 0 is 
applied first as it requires that D~~l = 0 and 
Di~ = 0. Next, the conditions at z = I are 
imposed. Because the eigen-values, Kn, are 
predetermined by the solution for the tempera
ture field, the stresses a~l and a~Q do not vanish 
at the edge of the cylinder. According to 
Nowacki,35 the stresses a~Q constitute a system in 
equilibrium, and the stresses a~l have the 
resultant 

N = 2;r J a~ilr dr (25) 

Thus condition (2) can be satisfied by applying a 
uniform tension of magnitude - N I A to the edge 
of the cylinder, where A is the cross-sectional 
area of the cylinder. Application of the 
remaining boundary conditions (3)-(6), creates a 
10 x 10 system of linear algebraic equations. This 
set of equations can be written in matrix form 
and solved for the 10 remaining unknown 
constants by LU decomposition. Once the 
constants are determined, they are substituted in 
eqns (24) to calculate the theoretical value for 
axial displacement. 

COMPARISON OF THEORY AND 
EXPERIMENT 

By the use of eqn (24), the theoretical 
displacements could be calculated and compared 
with the experimental results. The necessary fiber 
and matrix properties are listed in Table 1. For a 
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Fig. 4. Comparison of theoretical and experimental 
displacements for no interphase. 

first comparison, the influence of an interphase 
was not considered. The properties of the region, 
r1 < r < r2 , were chosen to be identical to those of 
the surrounding matrix. In Fig. 4, the resulting 
theoretical displacement curve is plotted along 
with the experimental profile as a function of 
radial distance. The displacement values have 
again been normalized by subtracting the value 
of the displacement at twenty-five fiber radii out 
from the fiber. The experimental curve is the 
average of the data from two runs for samples B 
and C. From about three fiber radii out to the far 
field matrix, the theoretical and experimental 
predictions are in excellent agreement. At closer 
than three fiber radii to the fiber center, the two 
curves start to differ dramatically. The ex
perimental value for the fiber displacement is 
much less than predicted by theory for a uniform 
matrix with no interphase. Consequently, there is 
a much sharper gradient in the experimental 
displacement curve at the fiber/matrix interface. 
When the sample is heated, the matrix material 
near the fiber surface does not behave as 
predicted for a uniform matrix with no 
interphase, while the matrix in the far field does 
behave as the bulk resin. 

Before considering the influence of a distinct 
interphase, the effects of changing the material 
properties of the matrix were evaluated. Figure 5 
demonstrates the effect of variations in the 
matrix modulus. As the modulus is changed from 
its measured value for the plain resin, the 
theoretical displacement profiles differ dramatic
ally in the region from the fiber surface to about 
15 fiber radii out into the matrix. As the modulus 
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Fig. 5. Parametric studies of the effects of matrix modulus 
on the theoretical displacement profiles for no interphase. 

is made lower, the displacement profile near the 
fiber/matrix interface becomes steeper and 
approaches the gradient observed experiment
ally. This behavior is intuitive when the 
boundary conditions are considered. Continuity 
of displacements is required at the interface. 
Therefore, the lower the matrix modulus, the less 
the fiber is forced to extend with the matrix, and 
the steeper is the displacement gradient at the 
interface. Displacement profiles for different 
values of the matrix coefficient of thermal 
expansion are plotted in Fig. 6. Although 
different values of the expansion coefficient cause 
the slope of the far field displacement curve to 
change significantly, there is no pronounced 
influence on the displacement gradient at the 
interface. This preliminary parametric study 
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suggests the existence of a low modulus region 
near the fiber surface. 

Consequently, the next step in the analysis was 
to investigate the influence of a distinct 
interphase region with properties that varied 
significantly from the neat matrix. The thermal 
conductivity and Poisson's ratio of the inter
phase, however, were assumed to have the same 
values as the matrix. Three unknown variables, 
the interphase width, elastic modulus and 
coefficient of thermal expansion, were necessary 
to predict the thermal displacement field. 
Changes in the coefficient of thermal expansion 
of the interphase, had little influence on the 
displacement predictions unless unrealistically 
large interphase widths (over one fiber diameter) 
were considered. As expected from the above 
discussion on matrix modulus, decreasing the 
interphase modulus from the value for the plain 
resin caused the theoretical profiles to become 
much steeper at the fiber/matrix interface. 

The value of the interphase modulus required 
to model the experimental profiles most closely 
was highly dependent on the chosen interphase 
width. As the width of the interphase region, 
A = r2 - ru was made smaller, a lower value of 
interphase modulus was needed to model the 
sharp displacement gradients observed ex
perimentally. For larger interphase widths, the 
interphase modulus did not have to be quite as 
low to produce the necessary gradient. However, 
if too large an interphase width was chosen, the 
far field displacements would no longer cor
respond with the experimental profiles. 

For thin interphase regions (A :s 0·5 fiber 
radii), a modulus one order of magnitude lower 
than that of the plain resin most closely matched 
the experimental data. To obtain a modulus this 
low, the epoxy would have to be heated to a 
temperature above its glass transition, 'Fg. 
Polymers typically experience one order of 
magnitude drop in modulus accompanied by a 
two- or three-fold increase of the coefficient of 
thermal expansion at temperatures above their 
'Fg. Palmese14 has measured the value of the 
modulus and coefficient of thermal expansion 
above 'Fg for the EPON 828/PACM 20 system. 
These values are listed in Table 2. If the 
interphase parameters are assigned the values in 
Table 2, a value of A = 0·058 fiber radii as the 
interphase width most closely matches the 
experimental data. 

Figure 7 compares the theoretical displacement 

Table 2. EPON828/PACM20 material 
properties above Tg 

E (GPa) 
ll' (xl0-6 oc-') 

0·045 
160·0 

predictions with experimental observations for an 
interphase characterized by the properties in 
Table 2. The properties of the matrix were those 
of the plain resin given in Table 1. Although the 
experimental and theoretical values for fiber 
displacement are now comparable, the two 
curves do not match exactly. The theoretical 
curve is much steeper (almost vertical) at the 
fiber/matrix interface. If the physical gradients 
were as steep as predicted, there would be an 
averaging effect present in the experimental data 
owing to the size of the photodetector window. 
The window is 0· 75 mm in diameter, which 
translates into 1·4 fiber radii on the magnified 
image plane. Thus any sharp change in profile 
will be averaged across the window. A schematic 
illustration of this 'windowing' effect on a vertical 
slope is shown in Fig. 8. Ideally, the experimen
tal data should be deconvoluted to eliminate the 
effects of the circular detector window. It is much 
more convenient, however, to perform a running 
average of the theoretical displacement predic
tions. If the theoretical profile in Fig. 7 is 
averaged over the appropriate size window, the 
curve in Fig. 9 is obtained. The agreement 
between theory and experiment is improved even 
further. There is still a small discrepancy between 
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Physical Contour 

Measured Contour 

Fig. 8. Schematic illustration of 'windowing' effect on 
displacement profiles. 

the two curves, but this may be attributed to the 
limitations of the theoretical displacement model. 
Only a uniform interphase region with no 
property gradients was considered. Ideally, a 
more sophisticated computational model of the 
thermal displacements could be developed to 
match more accurately the properties of the 
interphase. The current model, however, is 
sufficient to show the trends in the interphase 
properties needed to produce the measured 
displacement profiles. 

DISCUSSION AND CONCLUSIONS 

Comparison of the theoretical displacement 
predictions with the experimental profiles 
measured by the interferometer indicate that the 
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Fig. 9. Effect of 'windowing' theoretical thermal displace
ment predictions for interphase region characterized by the 

parameters in Table 2. 

value of the matrix properties near the fiber 
surface differed appreciably from the value in the 
plain resin. The difference between the ex
perimental and theoretical curves when no 
interphase is considered is too large to be 
accounted for by experimental error or small 
variations in the properties of the matrix. A thin 
interphase region of approximately 0·06 fiber 
radii, with a modulus one order of magnitude 
lower than the plain resin, most closely matched 
the experimental profiles. In order for the 
modulus to be this low, the epoxy in the 
interphase would have to be heated to a 
temperature above its glass transition. 

Recently, Palmese14 has demonstrated that 
structural gradients occur near graphite fiber 
surfaces in the EPON 828/P ACM 20 matrix 
which could potentially lower the glass transition 
temperature. Figure 10 is a plot of glass 
transition temperature as a function amine 
concentration for the EPON 828/PACM 20 
system. At the stoichiometric point (28 parts 
PACM 20: 100 parts EPON 828), the glass transi
tion temperature is 160°C. For amine concentra
tions both above and below the stoichiometric 
point, the value of Tg is significantly reduced. If 
the fiber surface alters the cure chemistry such 
that a non-stoichiometric mixture of amine and 
epoxy occurs, the material in that region would 
have a much lower glass transition temperature 
than the plain resin. Hence it is possible that 
heating to 70°C during the experiment caused the 
material in a thin interphase to exceed its glass 
transition temperature. The surrounding matrix, 
sufficiently far from the fiber, would be 
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unaffected by this phenomenon. This result has 
significant implications for the thermal behavior 
and long-term performance of a composite. 

The current study offers experimental evidence 
indicative of a depressed glass transition tem
perature in the interphase which is consistent 
with the findings of several other researchers. 
The concept of the existence of a viscoelastic 
interphase with a lower glass transition tempera
ture has been discussed previously by Papanico
laou et al. 36 Pogany37 first showed that non
stoichiometric concentrations of an aliphatic 
polyamine cross-linked with an epoxy resin can 
lead to reductions in the glass transttlon 
temperature. Lipatov et al. 11 concluded that a 
selective sorption of one of the components in a 
filled epoxy system may occur on the filler 
surface before hardening. A surplus of the other 
component may act as a plasticizer which causes 
a reduction of elastic moduli and a change in the 
relaxation behavior of the filled system. Crowson 
& Arridge38 provided evidence for a difference in 
glass transition temperature between filled and 
unfilled epoxy systems. 

Overall, an interferometric technique has been 
developed which is capable of making in-situ 
displacement measurements on a scale com
mensurate with the fiber/matrix unit cell. The 
ability to make such displacement measurements 
provides a quantitative method for studying 
material properties and behavior in the inter
phase. An elasticity solution was derived to 
predict the thermal displacements of a single 
fiber specimen. A three-phase model was 
adopted so that the influence of a uniform 
interphase region could be studied. Comparison 
of the theoretical displacement predictions with 
the experimental profiles measured by the 
interferometer verify that the value of the matrix 
properties do vary near the fiber surface. 
Furthermore, the experimental data imply that 
the interphase has a modulus significantly lower 
than that of the plain resin when heated, and 
consequently a lower glass transition 
temperature. 

If the interphase has a lower glass transttlon 
temperature, the region would have a pro
nounced effect on the fracture toughness, 
durability and local stress state of the composite. 
Such a low modulus region would act to arrest 
crack growth in the matrix and significantly 
increase the fracture toughness. On the other 
hand, at high temperatures the performance of 

the composite would be significantly reduced. 
Work is in progress to control the interphase 
structures so that the interphase can be tailored 
to enhance or hinder these effects depending on 
the application. 
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APPENDIX 

In general, the displacements and stress com
ponents associated with the particular solution 
are related to «P in cylindrical coordinates by39 

act> 
u'=--

ar 
(Al) 

act> 
(A2) w'=-

az 

( a2cp ) a: = 2fl a2r - v2cp (A3) 

( a2cp ) a~ = 2fl a2z - v2cp (A4) 

C act> ) a~= 2fl --- V2«P 
r ar 

(AS) 
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a:z = 2fl( a2

ct> ) araz (A6) 

Substitution of ci>, given by eqn (20), into the 
relationships (A1)-(A6) yields the following 
expressions for the corresponding components of 
the stresses and displacements: 

mUl 00 

u'(i) = 2 ~1 rfon(r) cos(Knz) (A7) 

(A8) 

00 

a:<i) = fl Ulm (i) L 
n=l 

00 

a;~i) = -p,UlmUl L Knrfon(r) sin(Knz) 
n=l 

(A10) 
00 

a~<i) = -p,<i)m(i) L fon cos(Knz) (All) 

00 

a;(i) = - p,Ulm<i) L 
n=l 

where 

fon(r) = [Anlo(Knr) + BnKo(Knr)] (A13) 

ftn(r) = [Anll(Knr)- BnKI(Knr)] (A14) 

The constants An and Bn are the same as given in 
eqns (14) and (15). 

For a cylindrically symmetric coordinate 
system, the components of the displacements and 
stresses associated with the complementary 
solution are related to the Galer kin vector, F, 
by35 

(A15) 

(A16) 

(A17) 

(A18) 

a"= _lf!:_ ~ [(2- v) V2F- a
2

F] (A20) 
z 1- 2v az 8z2 

Substitution of F, given by eqn (23), into the 
relationships (A15)-(A20), yields the following 
expressions for the corresponding components of 
the stresses and displacements: 

00 

u"(i) = L [D~~h~~(r) + D¥Jg~iJ(r) 
n=l 

+ D~Jh~J(r) + D¥Jg¥J(r)] cos(Knz) (A21) 
00 

w"U) = L [DfJh~J(r) + D¥Jg~iJ(r) 
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a;'(i) = L [D~~h~~(r) + D~~~~(r) 
n=l 

00 

a~<i) = L [D~~hYJ(r) + D¥JgVJ(r) 
n=l 

00 

a';<i) = 2: [Dnh~J(r) + D~g~J(r) 

a"(i) = ~ [DUlh(i) (r) + DUlg(il(r) 
r z LJ ln lln 2n 11 

n=l 

Where DUl DUl DUl and v<i) are constants to be 
lnJ 2nJ 3nJ 4n 

determined. The functions h}:/ and gj~l, where 
j = 1, 2, ... , 12, are combinations of modified 

Bessel functions and can be expressed in terms of 
the engineering constants, E and v, as follows: 
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1 C) 

(i)- ( + v') 2 h4n- £(i) Kn 

(A27) 

(A28) 

(A29) 

(A31) 
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h~ = K~(2v -l)/0(Knr) (A34) 

h~2 = K~l0(Knr) (A35) 

M~n = K~[2(2- v)Io(Knr) + Knrlt(Knr)] (A36) 

hWn = K~ft(Knr) (A37) 

h~2n = K~[Knrl0(Knr) + 2(1- v)/1(Knr)) (A38) 
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gg2 = K~[(1- 2v)K0(Knr)- KnrK1(Knr)] 
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